

JTLS-GO

Version Description Document

December 2025

DEPARTMENT OF DEFENSE
JOINT STAFF J7
116 LAKE VIEW PARKWAY
SUFFOLK, VA 23435-2697

JOINT THEATER LEVEL SIMULATION - GLOBAL OPERATIONS
(JTLS-GO 6.3.8.0)

[Blank Page]

ABSTRACT

The Joint Theater Level Simulation - Global Operations (JTLS-GO[®]) is an interactive, computer-based, multi-sided wargaming system that models air, land, naval, Special Forces, and Non-Governmental Organization (NGO) functions within a combine joint and coalition environment.

This *JTLS-GO Version Description Document (VDD)* describes the new features of the Version 6.3.8.0 delivery of the configuration-managed JTLS-GO software suite.

JTLS-GO 6.3.8.0 is a Maintenance release of the JTLS-GO 6.3 series that includes fixes to uncovered software issues, an updated repository of standard data, and a demonstration scenario based in the western Pacific. This release includes one new model enhancement, described in Chapter 2. Code modifications that represent corrections to known Software Trouble Reports (STRs) are described in Chapter 3. Remaining and outstanding STRs are described in Chapter 4.

This publication is updated and revised as required for each Major or Maintenance version release of the JTLS-GO model. Corrections, additions, or recommendations for improvement must reference specific sections, pages, and paragraphs with appropriate justification and be forwarded to:

JTLS-GO Director of Development
Valkyrie Enterprises LLC
1200 Piedmont Ave, Suite A
Pacific Grove, California 93950-5157
United States
jtlsgo@valkyrie.com

Copyright 2025 - Valkyrie Enterprises LLC - All Rights Reserved

[Blank Page]

TABLE of CONTENTS

ABSTRACT	iii
1.0 INTRODUCTION	1-1
1.1 SCOPE	1-1
1.2 INVENTORY OF MATERIALS	1-1
1.2.1 Obsolete/Outdated Documents	1-1
1.2.2 Unchanged Documents	1-1
1.2.3 Updated Documents	1-2
1.2.4 New Documents	1-2
1.2.5 Delivered Software Components	1-2
1.2.6 Released Databases	1-5
1.3 INTERFACE COMPATIBILITY	1-5
1.3.1 Support Software	1-5
1.3.2 JTLS-GO Cybersecurity Compliance	1-7
1.3.3 JTLS-GO High Level Architecture Compliance	1-8
1.4 DATABASE MODIFICATIONS	1-8
1.4.1 JTLS-GO Using Legacy Default Symbol Set	1-9
1.4.2 JTLS-GO Using New Default Symbol Set	1-9
1.4.3 Standard Repository Changes	1-10
1.5 INSTALLATION	1-10
2.0 ENGINEERING CHANGE PROPOSALS	2-1
2.1 JTLS-2025-17420 SPECIFY EXTERNAL MISSION CALL SIGN USING ELS	2-1
3.0 SOFTWARE TROUBLE REPORTS	3-1
3.1 JTLS-2025-17387 DDS HISTOGRAM BUG FIXES	3-1
3.2 JTLS-2025-17391 SMALL SVP CLEANUP	3-1
3.3 JTLS-2025-17395 REFUEL MISSION QUICK ORDER EXTERNAL TANKS	3-1
3.4 JTLS-2025-17399 AAR ENGAGEMENT DATA COLLECTION CRASH	3-2
3.5 JTLS-2025-17401 SUPPLY USAGE REPORT FILTERING BY COUNTRY	3-2
3.6 JTLS-2025-17402 TANKER MOVE TO NEXT ORBIT DELETED REFUEL CHITS	3-2
3.7 JTLS-2025-17404 ORDER CONSTRAINT MIXED CASE VOCABULARY ENTRIES	3-2
3.8 JTLS-2025-17406 AIR MISSION FUEL CONSUMPTION DOUBLE COUNTING	3-3
3.9 JTLS-2025-17413 SVP INDICATES MAX OBJECT IN GRIDS SKIPPED	3-3
3.10 JTLS-2025-17416 NEW SVP WARNING 1165 - SELF PROPELLED COMBAT SYSTEM	3-4
3.11 JTLS-2025-17417 WHIP/DDS UNIT COLORS INCONSISTENT	3-4
3.12 JTLS-2025-17423 SATELLITE DAMAGE LOGIC ERRORS WITH NO REPORT	3-4
3.13 JTLS-2025-17425 SVP ERROR 342 AUTO-CORRECTIONS	3-4
3.14 JTLS-2025-17427 DUPLICATE EXECUTE MISSION TASK EVENTS	3-5
3.15 JTLS-2025-17429 STOP DUPLICATE TARGETS ON NEW UNIT CREATE	3-5
3.16 JTLS-2025-17431 WHEN CREATING NEW UNIT DEAD UNIT UIC FEASIBLE	3-5
3.17 JTLS-2025-17433 UAVS SHOULD BE DETECTED BY OWN SIDE	3-6

3.18 JTLS-2025-17435 ICC JTOI NATO DIGRAPH COUNTRY CODES	3-6
3.19 JTLS-2025-17438 MIDB TOOL TARGET LOCATIONS SUPPORTING MGRS FORMAT	3-7
3.20 JTLS-2025-17441 CRASH CANCELING DELAYED MISSION	3-7
3.21 JTLS-2025-17442 CRASH REPAIRING UNOWNED EQUIPMENT SHELTER	3-7
3.22 JTLS-2025-17445 CADRG MAP LAYER DISPLAYS ON WHIP STARTUP	3-7
3.23 JTLS-2025-17447 CEP CRASH PUSHING LARGE ORDERS WITH AARC	3-7
3.24 JTLS-2025-17448 INCONSISTENT LOGSTIREP COLUMN HEADERS	3-8
3.25 JTLS-2025-17451 CONTROLLER CHANGE NAVAL UNIT STRENGTH	3-8
3.26 JTLS-2025-17454 RIC CODES IN IMT SCREENS	3-9
3.27 JTLS-2025-17456 ADD EVACUATIONS TO AAR MAINTENANCE INFO	3-9
3.28 JTLS-2025-17458 ORDER/UTILITY AIR ROUTES DIFFICULT TO DISTINGUISH	3-9
3.29 JTLS-2025-17460 WHIP/DDS/TRIPP LOGIN REPHRASING	3-9
3.30 JTLS-2025-17462 WHIP ORDER GROUP EDITOR FIXES	3-9
3.31 JTLS-2025-17463 DOCUMENT MISSION NAME LENGTH CHECK	3-10
3.32 JTLS-2025-17466 AIRLIFT UNIT MISSION CRASH WITH TRANSIT ROUTE	3-10
3.33 JTLS-2025-17470 ELS AIR MISSION TYPES AND POSTURES CHANGES	3-10
3.34 JTLS-2025-17472 GROUND ROUTE DOES NOT ALWAYS ATTEMPT DIRECT ROUTE	3-10
3.35 JTLS-2025-17473 FEASIBLE NETWORK RESTRICTION TOO RESTRICTIVE	3-11
3.36 JTLS-2025-17478 SDC LEAKS MEMORY DURING PROCESSING	3-11
3.37 JTLS-2025-17480 ATOT ACMS INGRESS/EGRESS ROUTE NAMES	3-12
3.38 JTLS-2025-17482 PLAYER CANNOT SEE OPAREA SPECIAL FLAGS	3-12
3.39 JTLS-2025-17484 OPAREA ROES CHANGED BY ANY SIDE WITH VISIBILITY	3-12
3.40 JTLS-2025-17487 DSA COLLECTION REPORT NEUTRAL TARGETS	3-13
3.41 JTLS-2025-17489 UNIT SENSOR RANGE RINGS NO LONGER AVAILABLE	3-13
3.42 JTLS-2025-17491 TECH TOOL COPYING FILES TO REMOTE HOST TOO SLOW	3-14
3.43 JTLS-2025-17493 OPM TABLES - TOGGLE ALL COLUMNS ON/OFF	3-14
3.44 JTLS-2025-17496 MDP DISPLAY IN 10-METER MGRS	3-14
3.45 JTLS-2025-17498 MDP DIRECTED MESSAGE WHIP SELECTION NOT WORKING	3-14
3.46 JTLS-2025-17500 TECH TOOL ORDER FIELDS IN PROPER SEQUENCE	3-15
 4.0 REMAINING ERRORS.....	4-1
4.1 DDSC/WHIP/JOBE - CADRG MAP ZOOM	4-1
4.2 MHE TARGETS LOADING AIR MISSION CAN CAUSE A CRASH	4-1
4.3 JTLS-GO STRATEGIC LIFT MISSIONS ARE NOT WORKING PROPERLY	4-1
4.4 TACTICAL GROUND FORMATION ATTACKS DO NOT WORK	4-1
4.5 ATOT SPREADSHEET LACKS DETAILED FIELD CHECKING	4-1
4.6 MOVING COMBAT SYSTEM SUPPLIES CAN REDUCE UNIT STRENGTH TO ZERO	4-1
4.7 UPGRADE PROCEDURES FOR MAINTENANCE RELEASE OF POSTGRESQL	4-2
 APPENDIX A. ABBREVIATIONS AND ACRONYMS	A-1
 APPENDIX B. Version 6.3.8.0 DATABASE CHANGES	B-1
 APPENDIX C. VERSION Version 6.3.8.0 REPOSITORY CHANGES	C-1

1.0 INTRODUCTION

1.1 SCOPE

This *JTLS-GO Version Description Document* (VDD) describes Version 6.3.8.0 of the configuration managed Joint Theater Level Simulation - Global Operations (JTLS-GO[®]) software suite. JTLS-GO 6.3.8.0 is a Maintenance delivery for the JTLS-GO 6.3 series of releases.

JTLS-GO 6.3.8.0 includes the entire JTLS-GO suite of software, a repository of engineering level data, and a realistic demonstration scenario, called “wespac63”, based on the Western Pacific theater of operations. There were no database format modifications between this Maintenance release and the original JTLS-GO 6.3.0.0 version. Appendix B of the original *JTLS-GO 6.3.0.0 Version Description Document* summarized the database format changes made between the JTLS-GO 6.2 series and this JTLS-GO 6.3 series of the software system.

Detailed description of the new Engineering Change Proposals (ECPs) is provided in [Chapter 2.0](#). [Chapter 3.0](#) summarizes the Software Trouble Reports (STRs) that have been corrected and are delivered with this version of JTLS-GO 6.3.

JTLS-GO 6.3.8.0 executes on the Red Hat Enterprise Linux Version 9.4 and Oracle Linux 9.4 64-bit operating systems. The Web-Hosted Interface Program (WHIP[®]) user workstation interface can be executed on any 64-bit operating system from any Java-compatible Web browser.

1.2 INVENTORY OF MATERIALS

This section lists documents and software that are relevant to JTLS-GO. All JTLS-GO documents included in this delivery are provided in PDF format within a documents subdirectory.

1.2.1 Obsolete/Outdated Documents

No documents have been deleted or become outdated as a result of this release.

1.2.2 Unchanged Documents

- *JTLS-GO Air Services User Guide* (JTLS-GO Document 02, Version 6.3.4.0)
- *JTLS-GO Configuration Management Plan* (JTLS-GO Document 03, Version 6.3.0.0)
- *JTLS-GO DDS User Guide* (JTLS-GO Document 06, Version 6.3.6.0)
- *JTLS-GO Director Guide* (JTLS-GO Document 07, Version 6.3.7.0)
- *JTLS-GO Repository Description* (JTLS-GO Document 14, Version 6.3.4.0)
- *JTLS-GO Software Maintenance Manual* (JTLS-GO Document 15, Version 6.3.7.0)

- *JTLS-GO Technical Coordinator Guide* (JTLS-GO Document 16, Version 6.3.7.0)
- *JTLS-GO Entity Level Server User Guide* (JTLS-GO Document 19, Version 6.3.4.0)
- *JTLS-GO Federation User Guide* (JTLS-GO Document 20, Version 6.3.0.0)
- *JTLS-GO C4I Interface Manual* (JTLS-GO Document 21, Version 6.3.5.0)
- *JTLS-GO DoD Architecture Framework* (JTLS-GO Document 22, Version 6.3.0.0)

1.2.3 Updated Documents

- *JTLS-GO Analyst Guide* (JTLS-GO Document 01, Version 6.3.8.0)
- *JTLS-GO Controller Guide* (JTLS-GO Document 04, Version 6.3.8.0)
- *JTLS-GO Data Requirements Manual* (JTLS-GO Document 05, Version 6.3.8.0)
- *JTLS-GO Executive Overview* (JTLS-GO Document 08, Version 6.3.8.0)
- *JTLS-GO Installation Manual* (JTLS-GO Document 09, Version 6.3.8.0)
- *JTLS-GO WHIP Training Manual* (JTLS-GO Document 10, Version 6.3.8.0)
- *JTLS-GO Player Guide* (JTLS-GO Document 12, Version 6.3.8.0)
- *JTLS-GO Version Description Document* (JTLS-GO Document 17, Version 6.3.8.0)

1.2.4 New Documents

No new documents are required for this version of the software.

1.2.5 Delivered Software Components

JTLS-GO 6.3.8.0 may be delivered either on a CD or as a set of compressed TAR files to be downloaded. Either method includes the complete suite of software executable code and command procedures. The following software components are included with this release:

- Combat Events Program (CEP)
- Geo-Spatial Service (GSS)
- Scenario Initialization Program (SIP)
- Interface Configuration Program (ICP)
- Reformat Spreadsheet Program (RSP)

- JTLS Symbols Application (JSYMS)
- Database Development System (DDS)
 - Database Configuration Program (DCP)
 - DDS Client User Interface (DDSC)
- ATO Translator Service (ATOT)
- ATO Generator Service (ATOGEN)
- ATO Retrieval Program (ATORET)
- JTLS Convert Location Program (JCONVERT)
- Count Critical Order Program (CCO)
- JTLS HLA Interface Program (JHIP)
- After Action Review Client (AARC)
- Scenario Data Client (SDC)
- Order Entry Client (OEC)
- Order Verification Tool (OVT)apache –
- JTLS Object Distribution Authority (JODA)

The current JODA build number is 215.

- Web Services Manager (WSM)
- Web-Hosted Interface Program (WHIP) and its component programs:
 - Apache Server (APACHE) version 2.4.62
 - JTLS XML Serial Repository (JXSR)
 - Order Management Authority (OMA)
 - Synchronized Authentication and Preferences Service (SYNAPSE)
 - XML Message Service (XMS)
 - Total Recall Interactive Playback Program (TRIPP)
- Entity Level Server (ELS)

- JTLS Operational Interface (JOI) for both OTH-Gold and Link-16 generation
- Tactical Electronic Intelligence (TACELINT) Message Service
- Keyhole Markup Language (KML) Operational Interface (KOI)
- JTLS Transaction Interface Program (JTOI)

JTOI_ICC302 - Used to feed NATO Integrated Command Control (ICC) Version 3.0.2 system.

JTOI_ICC320 - Used to feed NATO ICC Version 3.2.0 system.

JTOI_ICC340 - Used to feed NATO ICC Version 3.2.0 system.

JTOI_ICC350 - Used to feed NATO ICC Version 3.2.0 system.

JTOI_NECCCIS - Used to feed NATO Northern European Command, Command Control Information System (NECCCIS).

JTOI_TBMCS - Used to feed US Theater Battle Management Core System (TBMCS).

- JTLS Interface Network Navigator (JINN)
- JTLS Order of Battle Editor (JOBE)
- JTLS Geographic Information System (GIS) Terrain Building Program
- JTLS Master Integrated Database (MIDB) Tool
- JTLS Version Conversion Program (VCP)

VCP60 - Converts a JTLS-GO 5.1 database to a JTLS-GO 6.0 formatted database.

VCP61 - Converts a JTLS-GO 6.0 database to a JTLS-GO 6.1 formatted database.

VCP62 - Converts a JTLS-GO 6.1 database to a JTLS-GO 6.2 formatted database.

VCP63 - Converts a JTLS-GO 6.2 database to a JTLS-GO 6.3 formatted database.

Instructions for installing JTLS-GO 6.3.8.0 are provided in the *JTLS-GO Installation Manual*. Compared to the JTLS-GO 6.2 series, the JTLS-GO 6.3 series uses a significantly different version of PostgreSQL and the Linux operating system. If an organization has not already upgraded to the JTLS-GO 6.3 version, ensure special attention is given to following the documented operating system and PostgreSQL installation procedures. No other upgrade beyond installation of the compressed TAR files or CD is required. The software provided with this delivery is a complete release that includes all files and code required to execute JTLS-GO.

1.2.6 Released Databases

This release includes the following sample unclassified databases:

- The scenario that serves as a repository of engineering level data called “repository63”. Although not useful as a scenario, it does follow all of the database requirements for a scenario, and should be loaded into your PostgreSQL scenario table-space.
- The scenario “wespac63”, which is suitable for training and demonstrations. The scenario has been updated to use the newest version of engineering level data.

1.3 INTERFACE COMPATIBILITY

1.3.1 Support Software

JTLS-GO 6.3.8.0 requires the following versions of support software, including operating systems, compilers, scripting utilities, database tools, transfer protocols, and display managers.

- Operating system for the model: Red Hat Linux Enterprise Server (ES) Edition Version 9.4, 64-bit architecture.

JTLS-GO 6.3 has been tested with the following versions of Linux 9:

RedHat Linux 9.4 - this operating system license must be purchased.

Oracle Linux 9.4 - This operating system is free to download, use, and distribute, and is provided in a variety of installation and deployment methods. It has been approved by Defense Information System Agency (DISA) for use by U.S. Government Agencies.

- There are no restrictions on the operating system for client workstations, except that the operating system must be a 64-bit architecture with a Java-enabled web browser. JTLS-GO 6.3.8.0 has been tested on the following operating systems:

Red Hat Linux Enterprise Edition Version 9.4

Oracle Linux 9.4

Windows 10, which can be used only if the workstation is an external HTTP client of the simulation network.

- JTLS-GO 6.3.8.0 is delivered with the Adoptium project Temurin Java Development Kit (JDK) 1.8 Update 472 package. Both the ICP and DCP have the option for an organization to increase the maximum memory heap for the WHIP and DDSC. For large scenarios and databases, an organization should consider increasing the maximum heap size.
- JTLS-GO uses IcedTea to provide the Java Web Start capability that implements the web-enabled JTLS-GO functionality. JTLS-GO supports IcedTea version 1.8.4.

- JTLS-GO 6.3.8.0 is being delivered PostgreSQL 15.13 that has been compiled under Linux 9.4 and is bundled with the tar files for this release. This version of PostgreSQL is the latest security patch release of PostgreSQL and is being delivered in accordance with US Department of Defense Cybersecurity requirements. It is not necessary to use the delivered solution, but it is the easiest method to meet the requirements of JTLS-GO 6.3.8.0. There are several alternative methods available for obtaining the PostgreSQL 15.13 software. Refer to Chapter 6 of the *JTLS-GO Installation Manual* for additional installation details.
- Windows software, X11R5 server, Motif 1.2 Library, Motif Window Manager: These items are included as part of the supported versions of Red Hat Linux ES.
- The Perl script language is used by the JTLS-GO system and game setup scripts. The version of Perl included with the supported versions of Red Hat Linux ES is sufficient. The Perl program is typically located in the /usr/bin directory. If Perl is installed in a another location, a link should be created from the /usr/bin directory to this program.
- SIMSCRIPT III (SIMSCRIPT to C) translator/compiler: SIMSCRIPT is required for recompiling JTLS-GO code. It is not necessary to have a SIMSCRIPT compiler to execute JTLS-GO, because all JTLS-GO software executables are statically linked with the SIMSCRIPT libraries. The compiler is needed only if you are a U.S. Government organization that can obtain source code and plan to re-compile JTLS-GO SIMSCRIPT code.
- ANSI C Compiler: It is not necessary to use a C compiler to execute JTLS-GO. This compiler is used only by U.S. Government organizations that can obtain source code and intend to re-compile any of the JTLS-GO component programs. The C Compiler version delivered with the supported versions of Red Hat Linux ES is sufficient.
- C++ Compiler: It is not necessary to use a C++ compiler to execute JTLS-GO. This compiler is used only by U.S. Government organizations that can obtain source code and intend to re-compile any of the JTLS-GO HLA component programs. The C++ Compiler version delivered with the supported versions of Red Hat Linux ES is sufficient.
- The JTLS-GO DDS application uses these open source libraries:
 - JFreeChart, licensed under a GNU Lesser General Public License (LGPL) by Object Refinery Limited, <http://www.object-refinery.com>
 - JCommon, licensed under LGPL2.1 (GNU Lesser General Public License version 2.1 or later) by Object Refinery Limited, <http://www.object-refinery.com>
 - Commons-math3-3.0.jar, licensed under Apache Software Foundation (Apache License, Version 2.0) <http://www.apache.org/licenses/LICENSE-2.0HOLA> Compliance
- KML Operational Interface (KOI)

The Keyhole Markup Language (KML) Operational Interface (KOI) server utility enables the model to feed operational simulation data to any version of Google Earth™. The display capabilities and data transfer features of this terrain viewer are sufficiently robust to be used as a base-level operational interface. Operational Players who may be restricted from using an operational Command, Control, Communication, Computer Information (C4I) systems may be able to install and use Google Earth and configure the KOI to provide a capability that resembles C4I for observing perception Force Side data.

Chapter 3 of the *JTLS-GO C4I Interface Manual* describes requirements and procedures for using the KOI capabilities.

- JTLS-GO 6.3.8.0, using the JODA service, allows connections and data exchange with customer client programs. The customer client programs are linked with a set of JTLS-GO-provided API libraries that permit a TCP/IP connection between the JODA and the client program. These API libraries, called JDSP libraries, are built for Linux and Windows and allow customers to built client applications on either of these operating systems. Below are the development environments under which each of the JDSP libraries are built:

RedHat Linux 9.4 using gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3.0.1)

Windows 10 using Visual Studio 2017 version 15.9.60 and Visual C++ 00369.60000.00001-AA807

1.3.2 JTLS-GO Cybersecurity Compliance

Because of recent incidents of intrusions into software systems, the United States Department of Defense (DoD) has implemented a strong and strictly enforced Cybersecurity program. JTLS-GO, as software that executes on DoD systems, must comply to the mandates of the program, along with all of the third party software used by JTLS-GO, such as PostgreSQL and Java.

One of the DoD requirements is that the software must implement a methodology that ensures that the end user keeps the software up-to-date and all security patches are properly installed. In previous versions of JTLS-GO, Java 8, as delivered by Oracle, fulfilled this mandate by implementing an expiration date for its software. The concept of an expiration date has been removed from the DoD requirement, but the concept of always using the latest version of third-party software remains a strong component of DoD Cybersecurity requirements.

The following procedure has been established and approved by the JS/J7 Cybersecurity branch to meet the software update requirement:

- Within days of an Oracle Java security release, AdoptOpenJDK produces an equivalent version using infrastructure, build and test scripts to produce pre-built binaries of the OpenJDK class libraries. All AdoptOpenJDK binaries and scripts are open source licensed and available for free.

- Within two-weeks of the AdoptOpenJDK release, JTLS-GO provides a bug release version (JTLS-GO 6.3.n.0) including a full Version Description Document (VDD) for download to all authorized agencies. All DoD agencies using JTLS-GO will be in full compliance with this specific Cybersecurity mandate as long as they download and use the bug released versions when distributed.

The JTLS-GO 6.3 series has been issued an Exit Gate letter and certification from the JS/J7 Cybersecurity branch. Please contact the U.S. Government Program Manager, Mr. Douglas Failor (douglas.l.failor.civ@mail.mil) to obtain the completed Cybersecurity paperwork.

1.3.3 JTLS-GO High Level Architecture Compliance

The JTLS-GO 6.3.8.0 release is fully High Level Architecture (HLA) compliant, and includes all the programs required to run JTLS-GO in an HLA mode. JTLS-GO currently belongs to one federation known as GlobalSim. GlobalSim is a comprehensive constructive simulation solution for joint training and wargaming that helps commanders and all levels of staff prepare for a range of operational scenarios.

The solution combines JTLS-GO with CAE's GESI constructive tactical entity-level simulation system. CAE's GESI constructive simulation system is designed to run complex and comprehensive exercises from the company level up to division level. The GESI system is used to represent a virtual battlefield, including weapons, vehicles, aircrafts, ground forces and more.

Combining JTLS-GO and GESI brings together operational and tactical level constructive simulations to prepare commanders and staff to make timely, informed and intelligent decisions across the full spectrum of operations, including conventional combat, disaster relief, and operations other than war.

From the JTLS-GO perspective, all software needed to run GlobalSim is included in this delivery. JTLS-GO uses the Federation Object Model (FOM) located in the \$JGAME/data/hla directory. Previous federation testing of JTLS-GO with CAE's GESI model has been accomplished using this FOM. The reader should note that the JTLS-GO Development Team, to date, has not been able to test this federation using this maintenance release of JTLS-GO. If there is interest in running this federation, please contact the JTLS-GO Help desk at jtlsgo@valkyrie.com.

The HLA RTI (Run Time Infrastructure) executive program (rtiexec) recommended for use with this release is Pitch pRTI Evolved 4.4.2.0. However, this program is not included in the JTLS-GO 6.3.8.0 delivery. Users may obtain a full installation package of the RTI software from Pitch Corporation (www.pitch.se). For information about executing the HLA RTI Executive and other HLA-related software, refer to the appropriate HLA documentation and user guides.

1.4 DATABASE MODIFICATIONS

Significant database structure differences exist between the JTLS-GO 6.3 series and the previous JTLS-GO 6.2 series database structure. Appendix B of the *JTLS-GO 6.3.0.0 Version Description*

Document has a summary of all database changes. To upgrade your JTLS-GO 6.2 scenario to JTLS-GO 6.3 compatibility, see instructions listed in the *JTLS-GO DDS User Guide*, Chapter 3.1.

Due to changes made in support of STR JTLS-2025-17088 Missile Capability Does Not Have Torpedo, the record has been added to the JTLS-GO 6.3.5.0 Configuration Managed `tw_missile_capability` lookup table. This is not a database format change, but to make this new record available for the database building effort, users should **unload** their JTLS-GO 6.3 series scenarios prior to installing JTLS-GO 6.3.5.0, and then **load** them following installation. Please refer to the *JTLS-GO 6.3.5.0 Version Description Document* for more details.

Upgrading earlier JTLS-GO versions to the JTLS-GO 6.3 format will automatically correct the problem. No additional action is required.

Due to the mandated Cyber-Security improvements made to the Database Configuration Program (DCP) and the Database Development System Client (DDSC) for JTLS-GO 6.3.4.0, each PostgreSQL database scenario needs to be reconfigured. If you skipped moving in JTLS-GO 6.3.4.0, please execute the procedure in the following note for each JTLS-GO 6.3 scenario:

- Go to the `$JTLSHOME/data/scenario/<scenario_name>/config` directory.
- Delete the entire directory and its subdirectories.
- Start the new DCP and create the needed DDSCs.
- Each organization can decide whether they want to use the new encrypted password capability and the new DDSC privilege capability. Refer the *JTLS-GO Database Development User Guide* for information concerning the new DCP interface.

1.4.1 JTLS-GO Using Legacy Default Symbol Set

If a user organization is still using the pre-JTLS-GO 5.0.0.0 legacy default symbol set, prior to unloading your JTLS-GO 6.3.0.0 formatted data from your PostgreSQL database server into the JTLS-GO 6.3.0.0 scenario American Standard Code for Information Interchange (ASCII) text files, you must execute the JSYMS program using the procedure outlined in the *JTLS-GO DDS User Guide*, Appendix B.11. This procedure will reorganize the structure of the `<scenario_name>.gs` and databases symbol.scf file.

1.4.2 JTLS-GO Using New Default Symbol Set

Users are reminded that organizations should not make any modifications to the Default Symbol Set delivered with JTLS-GO. End-user organizations are free to use the Default Symbol Set in their

scenarios and alter the scenario symbol set to their scenarios to meet specific organizational needs.

The JTLS-GO Default Symbol Set has not been changed since August 2020. At that time, some new symbols were created to meet end-user requirements. No previously existing symbols were deleted nor were any of the preexisting symbol names changed. If any existing scenarios have not moved to this new Default Symbol Set, this means that the user can easily move in this new symbol set. Please follow the steps outlined in the *JTLS-GO DDS Users Guide*, Section B.13, Updating Scenario Symbol Set.

1.4.3 Standard Repository Changes

The JTLS-GO Database Team has continued to improve and expand the unclassified data repository, which has been renamed to “repository63”. The DDS comparison and synchronization function can be used to determine if any of the changes delivered are of use to a JTLS-GO user organization. Specifically, significant effort has been started to represent additional Combat Systems to more closely match the Combat Systems recognized by the Joint Live Virtual Constructive (JLVC) federation of models. This effort is expected to be an ongoing effort for the next three to five months.

1.5 INSTALLATION

The *JTLS-GO Installation Manual*, a Portable Document Format (pdf) file available for direct download, is part of this JTLS-GO delivery. It provides detailed instructions for installing the new version of JTLS-GO and the installation of PostgreSQL 15.13.

Reminder: Ensure existing JTLS-GO Version 6.3 databases held in the PostgreSQL table-space are unloaded prior to installation and reloaded after installation, as explained in [Section 1.4](#).

2.0 ENGINEERING CHANGE PROPOSALS

Four Engineering Change Proposals (ECP) were delivered with this release.

2.1 JTLS-2025-17420 Specify External Mission Call Sign Using ELS

Summary of Model Change Request

The Entity Level Server (ELS) required the capability to specify a call sign for external air missions. The call sign or aircraft tail number will be specified in an ELS order sent by the external model.

Design Summary

The CEP already supported the setting of call sign for external missions. Changes were made to propagate these changes through orders sent from the ELS. A keyword was added to the ELS order used to manage external missions. The ELS received the order and compiled the information needed in the subsequent order sent to the CEP. New values for the call sign were properly reflected in the aggregate air missions.

3.0 SOFTWARE TROUBLE REPORTS

Software Trouble Reports (STRs) describe software code errors that have been discovered by JTLS-GO users or developers and have been corrected.

3.1 JTLS-2025-17387 DDS Histogram Bug Fixes

This STR is a collection of bug fixes for DDS Histograms:

- The child tables for the Mine Clearing Capability table were missing histograms for the Mine Clear Rate column.
- The histogram number of buckets are inconsistent across various distributions.
- The histogram sum of iterations/leaves would sometimes equal to 299 instead of 300 iterations.

"Average Time to Clear a Mine" histograms were added to the child tables in respect to the Mine Clear Rate column.

Histogram number of buckets are set to 10 for all distribution types.

The sum of iterations for all distribution types now equal exactly 300.

3.2 JTLS-2025-17391 Small SVP Cleanup

Warnings 1349 and 1350 were both checks referring to the field TW.MISSILE.CAPABLE. Warning 1349 was generated if TW Advance Capability Communications link was something other than NONE but the TW was not missile capable. Warning 1351 was generated if TW Advance Capability Communications link was something other than NONE but the TW was not a CRUISE missile. Both of these warning were essentially checking for the same issue and have now been combined.

Warning 1350 has been removed and is now covered by Warning 1349.

3.3 JTLS-2025-17395 Refuel Mission Quick Order External Tanks

The CEP was enhanced to allow external "tip tanks" to be refueled in the air if the aircraft type was capable of doing so. The existing aerial refueling logic was updated appropriately, but the Refuel Mission quick order was overlooked. As a result, the calculated refuel amount excluded the refillable tank capacity.

The Refuel Mission logic was corrected to include the capacities of refillable external tanks (if present) plus the internal (intrinsic) fuel capacity of the aircraft type when calculating the amount of fuel to obtain from the tanker.

3.4 JTLS-2025-17399 AAR Engagment Data Collection Crash

The recent change in which an air mission can intercept and kill a cruise missile was not properly tested with the AAR on. Code was centralized to get the location of the defending object, but this newly centralized code was called without properly setting the of object for which its location was being requested.

The code was corrected to properly set the type of object for which its location was desired.

3.5 JTLS-2025-17401 Supply Usage Report Filtering By Country

The AAR Supply Usage Report had the capability to filter by Force Side and Faction. However, if all of the relevant units within a database belong to one Side and one Faction, these filters will not be useful for filtering by country.

The database has proper Political Countries assigned to the various units, allowing filtering by Political Country to fulfill the required goals. The CEP was modified to report initial assignment and changes to the Political Country of aggregate units. The AAR Supply Usage Report was modified to allow filtering based on this unit attribute.

Air missions, convoys, HRUS, and targets that receive, dispatch, or consume supplies look at the Political Country of their owning/associated aggregate unit to determine if the data should be included in the report.

3.6 JTLS-2025-17402 Tanker Move To Next Orbit Deleted Refuel Chits

All refuel chits belonging to an orbiting air refueling mission were deleted when the mission moved to its next planned orbit. In this situation, the refuel chits should have been retained.

Code was added to retain refuel chits when the tanker leaves orbit to fly to the next orbit location. If the mission is leaving its final (or only) orbit, the refuel chits are deleted. However, if the tanker is leaving orbit because it is running low on fuel (and therefore Heading Home), the refuel chits are not deleted, because the Controller may magically add fuel and return the mission to orbit.

3.7 JTLS-2025-17404 Order Constraint Mixed Case Vocabulary Entries

A constraint was added to the Damage Combat System order to only allow the "Always Evacuated" flag for damaged Combat Systems to be applied to Combat Systems that were Personnel.

Using the vocabulary entry "Always_Evacuated" would pass the OVP, but would not perform the restriction in the Order Management Authority (OMA). Instead, the value of the flag (4) had to be used in order to get the OMA to properly work. However, using an integer in the order caused the OVP to issue an error about the format of the order.

Two errors were uncovered while investigating this issue:

- The first was that vocabulary entries were being converted to upper case before searching for a match.
- The second was that if a match was not found, a value of zero was being returned, which is a valid value for some vocabulary entries and therefore was not generating an error in the OMA on startup.

Converting the vocabulary items to uppercase was removed from both the OVT Library and the AARC, which had similar code, and the return code for not finding a matching vocabulary entry was switched to -1, which is not used as a value for any existing vocabularies. Once the return code was changed it was necessary to check all programs that used the vocabulary call and update the associated error handling code to expect -1 on failure.

3.8 JTLS-2025-17406 Air Mission Fuel Consumption Double Counting

A number of AAR logistic reporting issues were found with air missions:

- When fuel was expended it was counted as both consumption by the mission and the owning unit.
- When an air mission was finished, fuel, weapons, and supplies of returning aircraft were recorded as consumed, when they are actually returned to the owning airbase/squadron. No consumption of these items was recorded for destroyed air missions.
- When a single aircraft of a mission was lost the aircraft fuel and weapons were reported as consumed for both the mission and the owning airbase/squadron.

The double reporting of fuel and weapons was fixed to only report the loss for the air mission. The loss of fuel, weapons, and supplies was removed from the surviving missions and added to the destroyed missions.

3.9 JTLS-2025-17413 SVP Indicates Max Object In Grids Skipped

Within the SVP, the user can indicate which Warnings should be skipped. As the SIP accomplishes the SVP checks, it skips those warnings it was told to skip. This skipping process is accomplished silently. There is no indication that the warning is being skipped during execution. There is one warning that the SIP notifies the user during execution that the warning is being skipped. This is the check that warns the database builder that there are too many objects in a single grid.

This inconsistency caused confusion leaving the user wondering if there is something special happening with that one warning. For that reason, the print statement telling the user that the Warning was being skipped was removed from the code base. The maximum objects per grid warning is now executed or skipped based on the input from the user. As with all skipped warnings, the final SVP report indicates which SVP Warnings were skipped.

3.10 JTLS-2025-17416 New SVP Warning 1165 - Self Propelled Combat System

A number of Combat Systems drawn from Supply Categories with a Shipment Type of "S_P", for "self-propelled", had CS.Fuel.Per.KM values of 0.

This is not an Error, but a Warning. It is expected for self-propelled Combat Systems to have a value greater than 0 for CS.Fuel.Per.KM to obtain proper fuel consumption data.

New SVP Warning 1165 is generated by the SVP to inform the database user of this situation.

3.11 JTLS-2025-17417 WHIP/DDS Unit Colors Inconsistent

The map.colors file mapped WHITE as "gray50" and CONT as "white". This leads to inconsistencies on the WHIP map when creating white range rings or ACMs, as it displays them as being gray.

Also, in the Map object filter panel, the object table column header for units with unknown sides is displayed as black. However, units with unknown sides on the map display as gray (or NEUTRAL in the map.colors file).

The map.colors file was changed to map WHITE as "white" and CONT as "gray50". This ensures the map will display true white when creating and displaying objects and selecting their color as white.

Also, changing the Controller side to "gray50" ensures that CONT and WHITE will not produce duplicate colors.

Also, the Map filter header column for units with unknown sides has now been changed to gray (specifically NEUTRAL in the map.colors file) instead of black. This ensures the header color for objects with unknown sides matches the unit color on the map who have unknown sides (currently set as gray or NEUTRAL).

3.12 JTLS-2025-17423 Satellite Damage Logic Errors With No Report

The Assess Weapon Damage order was submitted to damage a satellite. Logic errors were produced by the model by this order. No Player damage report was generated.

Logic errors occurred due to missing code for satellites and were corrected. There was also no code to generate a Player damage report when a satellite was damaged; new code was added to generate the report.

3.13 JTLS-2025-17425 SVP Error 342 Auto-Corrections

SVP Error 342, which checks that Targetable Weapons representing hypersonic missiles have appropriate ranges during their boost phases, did not have any auto-corrections to assist the database user.

Additionally, the model team has a rule to never access an attribute of an entity more than once in a routine. Simscript checks for every access, and this checking takes time. There were several attributes of the Targetable Weapon entity that were redundantly being accessed in the routine **CHECK.TARGETABLE.WEAPONS**.

To give the database user more clarity, two new auto-corrections, to either increase the minimum range or decrease the speed of the missile, have been added, as well as a third correction informing the user to decrease the number of boost phases for the Targetable Weapon.

The routine **CHECK.TARGETABLE.WEAPONS** has also been updated to reduce the number of redundant checks when the attribute of an entity is accessed more than several times throughout the routine.

3.14 JTLS-2025-17427 Duplicate Execute Mission Task Events

If the user delays a mission's primary task while the mission is in a Pre-Launch posture, the model automatically returns the mission's assets to the home squadron, places the mission back into a Scheduled posture and schedules a new resourcing event to occur at the appropriate time. This is done to ensure that the mission does not unnecessarily hold onto assets during the delay period.

However, the event used to tell the mission to launch is not canceled under this circumstance. A mission that has two Mission Task Execute events can cause major model issues.

The code was corrected to properly delete the event that had been scheduled to have the mission begin.

3.15 JTLS-2025-17429 Stop Duplicate Targets On New Unit Create

It is possible that when the Controller creates a new unit during game play that the new unit's Prototype Owed Targets (POT Targets) will create a target name that already exists in the game. The end result is that there are two targets with the same name in the game, which will cause numerous problems.

When creating a new unit that has POT Targets, the model now check if the POT target will end up with a unique name. If not, the POT target is not created, and a Logic Error is generated.

3.16 JTLS-2025-17431 When Creating New Unit Dead Unit UIC Feasible

When creating a new unit during game play, the model ensures that the UIC assigned to the new unit is not already being used. The model only checks if the UIC is being used by a unit in the Conflict Set, which means the unit is alive or still waiting to arrive in theater. It does not check if the UIC was previously used by a unit that is currently dead. Because the Controller can resurrect a dead unit, the Create Unit UIC check should also ensure that the UIC was not used by a dead unit.

The UIC of a unit must be unique. The primary reason for this rule is that in the real world, UICs are unique identifiers for units. Within the JTLS-GO modeling world it needs to be unique because the UIC is used to automatically name POT Targets. A POT Target name is created by taking the owning unit's UIC and concatenating it onto the POT Target's Base Name, which is a database parameter. If two units used the same UIC, it is possible that their POT targets may end up with the same name.

When creating a new unit, the model now checks the UICs for not only active units, but dead units as well. This is necessary because when a unit dies, its stationary targets do not die, but are simply left behind. The new check is needed to ensure the model does not end up with two targets that have the same name.

The code to check UIC was centralized but is called under numerous circumstances. Under one circumstance, when creating a Strategic Lift Manifest, the desire was to find an active unit by its UIC. In this one case, the dead unit list was not supposed to be checked. For this reason, the centralize routine was changed to pass in an argument indicating with the dead unit list should or should not be checked.

3.17 JTLS-2025-17433 UAVs Should Be Detected By Own Side

A UAV is being controlled from the ground, so there should be no reason to not have the mission automatically detected by its own Side.

There are now four reasons why an air mission will be self-detected by its own Side:

1. The mission's aircraft are Link 16 self-reporters.
2. The mission is normally in communication with the ground or is at its assigned orbit location, so the ground knows where it is.
3. The mission's aircraft are equipped with a GPS tracking capability, such as Blue Force Tracker.
4. The air mission is an Unmanned Aerial Vehicle.

3.18 JTLS-2025-17435 ICC JTOI NATO Digraph Country Codes

The ICC JTOI by default used the country codes that the scenario database was built with. ICC expects country codes in NATO Digraph, so if the scenario database is using a different format, ICC JTOI updates will fail.

The ICC JTOI was modified to always provide country codes to ICC in the NATO Digraph format.

3.19 JTLS-2025-17438 MIDB Tool Target Locations Supporting MGRS Format

Target locations in the MIDB migration tool do not support MGRS formats, but JDPIs do support MGRS.

The Java help documentation in the MIDB tool should reflect the supported formats but it currently does not.

Target locations now support MGRS format.

The Java help documentation now reflects the supported MGRS location formats for Targets and JDPIs.

3.20 JTLS-2025-17441 Crash Canceling Delayed Mission

The CEP crashed while canceling an air mission which had a posture of Supply Delay. The mission was unable to launch because it was deficient in some of the required supplies.

The model crashed because it was attempting to access the list of supplies held in the aircraft load. The load had not been defined in the code, so the model crashed while dereferencing a null variable. Changes were made to assign the aircraft load to the local variable before it was used to evaluate supply levels.

3.21 JTLS-2025-17442 Crash Repairing Unowned Equipment Shelter

The CEP crashed while attempting to repair an unowned equipment shelter.

The crash occurred because the code was attempting to access an attribute of the owning unit. Because the equipment shelter was not owned by a unit, the model attempted to dereference a null value. Code was added to skip the repair process for unowned targets.

3.22 JTLS-2025-17445 CADRG Map Layer Displays On Whip Startup

When starting a WHIP, the Map's CADRG layer may display on startup even though it is disabled.

A race condition was present where the CADRG map layer visibility was being set too early, depending on the system's performance. This issue has been resolved.

3.23 JTLS-2025-17447 CEP Crash Pushing Large Orders With AARC

When the CEP has packets to send to the AARC, and the AARC is not yet connected, the CEP stores the packet info as strings in an internal queue. This is common on a game start where Units and Targets are created before the CEP connects to the JODA, and therefore does not have a connection to the AARC. This also happens on a CEP restart with a push, where the pushed orders are read and processed before the JODA connection is established.

In such a situation, when the AARC does connect, the CEP will cycle through the queue, reconstructing the original packets from the strings, and send the packets to the AARC. During one exercise, some of the orders were more than 4000 characters long, which is the buffer size for reading the packet tokens when converting the string back into a packet. As the CEP code was reconstructing the order from the string, the buffer overflowed, causing heap corruption and a crash.

The code to reconstruct the packet from a string was modified so that the buffer will not be exceeded, limiting a token to the size of the buffer (4000 characters).

This limit will cause the truncation of the order string being sent to the AARC, but this would happen anyway when the AARC receives the packet, because the database column size for the order is only 4000 characters.

3.24 JTLS-2025-17448 Inconsistent LOGSTIREP Column Headers

The Combat System IMT, Unit/HRU Logistics Reports, and roll-up Unit Logistics Report had different column headers for the number of Combat Systems available for operations.

The column headers in the individual Unit/HRU Logistics Report and roll-up Unit Logistics Reports were adjusted to match the usage of "Oper" for the number of available Combat Systems in the other four.

The Combat System IMT is a separate media from the printed reports, and therefore the use of "Avail" is acceptable and has been for years.

Some minor clean-up was also accomplished.

3.25 JTLS-2025-17451 Controller Change Naval Unit Strength

A Controller Change Unit order was submitted to reduce a naval unit's strength to 60%. Then, the order was submitted again to reduce the ship to 50%. The strength dropped to 0% and the ship started sinking. The order was submitted a third time to bring the ship back up to 100%, but the strength remained at 0%, despite the Player message indicating the ship had been increased to 100%.

The problem was traced to a relatively new routine PROCESS.CONTROLLER.UNIT.STRENGTH. The local variable NEW.FRACTION was not initialized before the new strength calculations were made for a naval unit. The zero value resulted in the illogical behavior observed.

The error was corrected by moving the initialization of NEW.FRACTION from later in the routine to just before the subroutine call that calculates the new naval unit strength.

3.26 JTLS-2025-17454 RIC Codes In IMT Screens

Reportable Item Codes (RIC) were missing from Combat System, Target supply, and Unit supply IMT tables in the WHIP.

The RIC codes were added as a new column to the corresponding IMT screens.

3.27 JTLS-2025-17456 Add Evacuations to AAR Maintenance Info

The AAR Maintenance Report does not display evacuations of WIA personnel.

The EVACUATED Maintenance Action category was added to the report, and the CEP now sends these actions to the AAR system. An Evacuated column was added to the Maintenance Report and Object Event Report.

3.28 JTLS-2025-17458 Order/Utility Air Routes Difficult To Distinguish

Utility air routes and order air routes are difficult to distinguish on a WHIP Map when both routes are displayed together through an air order panel. This is because they are both painted on the Map as gold.

Change utility air routes to magenta. This makes order and utility air routes easier to distinguish when they are displayed together.

3.29 JTLS-2025-17460 WHIP/DDS/TRIPP Login Rephrasing

The login frames for the WHIP, DDS, and TRIPP all say "Log into the ..." and "Logging into server", which is incorrect grammar.

The login frames for the mentioned applications have been updated to "Log in to the ..." and "Logging in to server".

3.30 JTLS-2025-17462 WHIP Order Group Editor Fixes

Sharing groups in the Order Group Editor panel with other users sometimes results in the shared groups being invisible to other users, even if they have read permission.

An order group viewer frame from the Order Group Editor only opens the first time. After closing it, trying to reopen it again does not work and the frame will not show up.

Sharing groups with other users has been corrected - groups are now always viewable as ordered.

Users are now able to close and reopen the order group viewer frame multiple times.

3.31 JTLS-2025-17463 Document Mission Name Length Check

The developer wanted to disable the OMA check for the mission name length, which is used on orders creating a new air mission. The restriction limits the name length to 8 characters, allowing the CEP to add on a hyphen and unique numeric identifier to the mission name. This prevents duplicate mission names from being sent by the WHIP. If a new mission name with a length greater than 8 characters reaches the WHIP, the WHIP does not add on the unique identifier.

The developer wanted to submit mission names via a Read Order File (ROF), with more than 8 characters so that follow on orders could be prepared in a ROF without having to determine any CEP adjustments to the mission name. The Web Services Manager (WSM) and Order Verification Tool (OVT) show checks with a toggle box next to them indicating whether the checks are turned on or off, but this is for display purposes only. The developer could find no documentation instructing them how to turn off the mission name length check.

Checks can be enabled/disabled via an OMA console session as outlined in both the WSM on-line help and the *JTLS-GO Technical Coordinator's Guide*. However, the inoperable toggle buttons that are displayed on both the WSM and the OVT are confusing. The table with toggle buttons and check names are delivered in HTML format from the OMA to both the WSM and OVT. The function providing the information was modified to specify that the checks could be enabled/disabled via an OMA console.

3.32 JTLS-2025-17466 Airlift Unit Mission Crash With Transit Route

The model crashes when the user enters a Mobility Mission order in which the mission is given a route to follow between the pickup and dropoff locations.

An incorrect routine was called when processing the order's specified transit route. The code was rearranged and the correct routine is now being used.

While making this correction, duplicate code found in two related routes was removed and placed in a callable routine.

3.33 JTLS-2025-17470 ELS Air Mission Types And Postures Changes

The accepted types of air missions and their postures were changed in the CEP. To agree with the aggregate model, the equivalent changes were required to be made in the ELS.

The number of air mission postures increased to a total of 34, and the number of mission types was reduced to 13 from 18 original types. The associated ELS code was modified to incorporate these changes.

3.34 JTLS-2025-17472 Ground Route Does Not Always Attempt Direct Route

When a ground object attempts to find a route from one location to another, there are three different algorithms available:

- Optimized movement - This algorithm is available to Units and HRUs, and using the algorithm is specified as part of the movement order from the Player. The model attempts to find a road network for the specified move.
- Direct movement - This algorithm is always used for convoys and Units in an attack, delay or withdraw posture. In addition, the Player can indicate that the direct movement algorithm should be used as part of the movement order.
- Gridded optimization - This algorithm is a computationally heavy algorithm and it is employed when the optimized or direct route algorithms fail to find a route.

When Optimized movement is selected and fails, the model should have attempted to find a Direct movement option before moving on to the gridded optimization algorithm. This will improve model efficiency.

The model now works as specified above.

3.35 JTLS-2025-17473 Feasible Network Restriction Too Restrictive

When attempting to find a road network to move from one location to another, a rectangular region is formed to limit where the model should look for an appropriate route. The Road Network algorithm ensures that the selected roads do not go outside the database-established rectangular area.

The code also made some distance checks within the algorithm. These distance checks were unnecessary because the rectangle was established for this very purpose. Some convoys refused to use a fully acceptable road route because of these unnecessary distance checks.

The additional distance checks were removed. This makes the road selection algorithm run faster and ensures that the database-established rectangular region is responsible for ensuring only reasonable routes are selected.

3.36 JTLS-2025-17478 SDC Leaks Memory During Processing

The SDC was observed gaining memory while running for several hours. The SDC was restarted in order to reinitialize and possibly reduce its memory consumption. As a result, a significant amount of memory was dropped when it completed initialization and processing of the same objects it was handling before the restart.

A memory checking utility was used to wrap the SDC while running in a game of 900 air missions for 24 hours. This uncovered a leak related to processing object updates and creates. When the object is processed, the SDC must hash it into a local storage structure. During the hash process, the SDC obtains the mask of attributes that are set when the object container is received. A small amount of memory is acquired when the mask structure is used but not returned. This happens frequently for every object, so the cumulative memory loss continues to grow during a multi-day run.

The two routines for processing object updates and creates were modified. The memory used for the mask structure is returned to the system when processing is complete.

3.37 JTLS-2025-17480 ATOT ACMs Ingress/Egress Route Names

When an ACO contains an Air Control Mean (ACM) Area with spaces in its name, the ATO Translator is careful to substitute an underscore for the space in all references to the ACM in both the ACO and the ATO.

However, for missions in the ATO that use ACM corridors for ingress or egress routing, the substitution is not done. In this case the mission order fails to validate because the corresponding ACM corridor exists, but it has underscores in its name and does not match a corridor name having spaces.

The ATO Translator was modified to perform the substitution on ACM names used for ingress and egress routing, just like it does for ACMs used for tasking.

3.38 JTLS-2025-17482 Player Cannot See OPAREA Special Flags

Besides Rules of Engagement (ROE), an Operations Area (OPAREA) can be told to mark missions as special missions within generated Link 16 messages when the mission is in the OPAREA. The Manage Operations Area order is used to set or unset these special mission flags, but there is no method available to a Player to ask for the current special flag status for an OPAREA.

Currently, a Player, using the Manage Operations Area order can create a new OPAREA, delete an OPAREA, or modify any of an existing OPAREA's related information, except for the assigned OPAREA's ROE.

A fourth option has been added, called "Describe OPAREA". Submitting a "Describe OPAREA" order will generate a message that is sent to the requesting WHIP that contains all of the current OPAREA data (except the OPAREAs ROEs). This message includes the current status of the Foreign Side mission special flag instructions, and the Own Side Mission Type special flag instructions.

3.39 JTLS-2025-17484 OPAREA ROEs Changed By Any Side With Visibility

If an OPAREA is visible to several Sides, the ROE order allowed any Side with visibility of the OPAREA to change the OPAREA's ROEs.

This was not the intent of making an OPAREA visible to multiple Sides. Only the Side that owns the OPAREA should have the ability to set and change the ROEs for the OPAREA. The ROE order was changed to allow only the owning Side the ability to change an OPAREA's ROEs.

It should be noted that in August 2025, STR JTLS-2025-17296 was implemented to stop users from creating OPAREAs owned by the Controller as part of the database. This issue was not uncovered at that time.

This time a thorough review of all orders that reference an OPAREA was conducted. there were basically three types of orders that were considered for change:

- The ROE order was changed so only the owning Side can submit ROE changes for an OPAREA.
- The Manage Operations Area was also changed to limit who can modify, delete or view the settings for an existing OPAREA. Only the owning Side is allowed to accomplish these manage tasks for an existing OPAREA.
- All orbiting air mission orders have the ability to tell a mission to orbit in a known OPAREA. The Design Team decided not to change these orders. Any air mission that has visibility on an OPAREA can reference the OPAREA and have its mission orbit within the OPAREA.

3.40 JTLS-2025-17487 DSA Collection Report Neutral Targets

The AAR DSA Collection Report was crashing if the user requested collection of Neutral objects. This was a vocabulary issue with the code expecting a Side name.

The code was modified to use the proper vocabulary table that includes the neutral/no Side name.

3.41 JTLS-2025-17489 Unit Sensor Range Rings No Longer Available

If a Unit owns any Sensor Targets, a range ring for the maximum range of each of the Sensor's usage types should be available from the Unit icon on the Map, but those range rings are no longer available.

A Sensor Target has two ranges:

- The engineering capability of the type of Sensor.
- The Target's capability, which can never be larger than the engineering capability, but may be smaller based on individual Target limitations (such as minor maintenance issues or reducing power due to the interference of the signal on civilian assets).

Sensors, Jammers, Communication Sites, Surface-to-Surface Missiles, and Air Defense Sites can have individual Target limitations. Few databases implement the representation of individual Target limitations, but the ability to do so exists.

A code review uncovered the problem that a Target's individual limitation was not considered when creating the range rings available on a WHIP. The correction to this problem was properly implemented for all types of Targets except Sensor Targets. This error resulted in the Unit's Summary Target Range Rings for Sensors to all be set to zero and therefore not created.

The code for Sensor Targets was corrected and it now properly considers both the engineering range capability of a Target and the Target's individual limitations if such a limitation exists in the Target's database definition.

3.42 JTLS-2025-17491 Tech Tool Copying Files To Remote Host Too Slow

When trying to copy a large number of order groups with many orders, or a large number of map slides at a time to/from a remote host using the Tech Tool, the time to copy takes too long (for example, an order group with 1000+ unique orders can take up to 10 minutes).

The existing copying methodology for copying a large group of files was simplified, significantly reducing the copying speed.

3.43 JTLS-2025-17493 OPM Tables - Toggle All Columns On/Off

Toggling table columns on/off in the OPM can only be done one-by-one.

Table columns can now be toggled on/off with a single click.

3.44 JTLS-2025-17496 MDP Display In 10-Meter MGRS

The Message Delivery Program (MDP) only allows a user to choose location formats as either being in Text Lat/Lon or 5 digit (1 meter) MGRS. There was a need to display locations, via the MDP, in 4 digit MGRS.

The WHIP allows location displays in either text Lat/Lon, decimal Lat/Lon, 5 digit MGRS, 4 digit MGRS, 3 digit MGRS, 2 digit MGRS, or 1 digit MGRS.

The MDP configuration/monitoring program was modified to allow all the same location formats as the WHIP.

3.45 JTLS-2025-17498 MDP Directed Message WHIP Selection Not Working

The MDP configuration allows the selection of directed messages by message type and recipient WHIP. Numerous recipient WHIPs can be specified in the configuration, and an actual message may have one or numerous recipient WHIPs. For messages with multiple recipients, the MDP was not properly determining the match and processing the message even if there was a configuration match.

The search was properly identifying a configuration match, but was not properly terminating the search. This allowed the search to continue, which often ended in a determination that there was no match. This bug has been fixed so the search properly terminates once a configuration match is found.

3.46 JTLS-2025-17500 Tech Tool Order Fields In Proper Sequence

One of the capabilities of the Tech Tool program is to search for orders that contain a specified string. The returned orders can then be viewed either in their raw format as sent to the CEP, or in a more user-friendly format that uses the labels and the data appearance of the WHIP.

Because the WHIP does not guarantee the sequence that fields and groups appear in a submitted order string, the Tech Tool's user-friendly format does not match the sequence of fields and groups as they appear on a WHIP order panel. For large orders, this can substantially slow down debugging.

The parser that breaks an order string into field/group keywords and values was reorganized to load the fields and groups into memory, reorder them so they match the appearance of a WHIP order panel, and then write the data out for display.

It is possible for an order to have fields or groups that should not appear in the order string because the group option to which they belong was not selected. The OMA prevents this from happening for orders coming from the WHIP, but there are other ways to submit such bad orders. These fields/groups will still be displayed at the bottom of their section and highlighted to denote an error.

4.0 REMAINING ERRORS

Every effort has been made to correct known model errors. All reproducible errors that resulted in CEP catastrophic software failures (crashes) have been corrected. Other corrections were prioritized and completed according to their resource cost-to-benefit relationship.

The following list of issues is known and have not been fixed in time to make it into this release of JTLS-GO 6.3.8.0.

4.1 DDSC/WHIP/JOBE - CADRG Map Zoom

When using the CADRG map projection, if the width of the map is less than the height, the zoom tool does not work correctly.

4.2 MHE Targets Loading Air Mission Can Cause a Crash

MHE targets should be avoided for loading and unloading air missions. It is suggested that the database be set to “Do Not Use” for Air Missions.

4.3 JTLS-GO Strategic Lift Missions Are Not Working Properly

Strategic Lift Missions, used to move TPFDD assets into the Theater and report the results to a real-world TPFDD processing system, has not been updated to work within JTLS-GO 6.3.

4.4 Tactical Ground Formation Attacks Do Not Work

The ability to send a Tactical Ground Formation on an Attack mission has been temporarily disabled due to reliability issues.

4.5 ATOT Spreadsheet Lacks Detailed Field Checking

The ATOT Spreadsheet Parser has been found to have numerous issues within the Spreadsheet format that are not caught and cause the spreadsheet parser to crash. Fixing the uncovered issues are being worked and should be fixed prior to the next maintenance release of the JTLS-GO 6.3 series.

4.6 Moving Combat System Supplies Can Reduce Unit Strength To Zero

If a user does a mandatory transfer of Combat System supplies from one unit to another, the providing unit can be emptied out and exists without any Combat Systems or personnel. This situation needs to be thoroughly and properly handled.

4.7 Upgrade Procedures For Maintenance Release of PostgreSQL

The Development Team continues to look for viable options to upgrade from one maintenance release of PostgreSQL to a newer maintenance release.

APPENDIX A. ABBREVIATIONS AND ACRONYMS

Terms are included in this Appendix to define their usage in JTLS-GO design, functionality, and documentation.

AAA	Anti-Aircraft Artillery
AADC	Area Air Defense Commander
AAL	Air-to-Air Lethality
A/C	Aircraft
ACP	Air Control Prototype
ADA	Air Defense Artillery
AEW	Airborne Early Warning
AFB	Air Force Base
AG	Air-Ground (Air-to-Ground)
AI	Air Interdiction
AIM	Air Intercept Missile
AIREF	Air Refueling
AKL	Area Kill Lethality
AMMO	Ammunition
AO	Area of Operations
AOC	Air Operations Center
APC	Armored Personnel Carrier
ARECCE	Armed Reconnaissance
ARTE	Air Route
ARTY	Artillery
ASC	Automatic Supply Calculation
ASCII	American Standard Code for Information Interchange
ASW	Anti-Submarine Warfare
ATC	Aircraft Target Category
ATGM	Anti-Tank Guided Missile
ATK	Attack
ATO	Air Tasking Order
ATORET	Air Tasking Order Retrieve Program
ATOT	Air Tasking Order Translator
AWACS	Airborne Warning And Control System
AZ	Altitude Zone

BADGE	Bilateral Air Defense Ground Environment (used by Japan Defense Agency)
BAI	Battlefield Air Interdiction
BDA	Battle Damage Assessment
BDE	Brigade
BN	Battalion
C3	Command, Control, and Communications
C3I	Command, Control, Communications, and Intelligence
C4I	Command, Control, Communications, Computers, and Intelligence
CA	Civil Affairs
CADRG	Compressed ARC Digitized Raster Graphics
CAP	Combat Air Patrol
CAS	Close Air Support
CAT	Category
CCF	Central Control Facility
CCP	Command Control Prototype
CEP	Combat Events Program
CMDR	Commander
COP	Common Operational Picture
CP	Combat Power
CS	Combat System
CSP	Combat System Prototype
CTAPS	Contingency Tactical Air Planning System
CTG	Commander Task Group
CTRL	Control keyboard command
DCA	Defense Counter Air
DCL	Digital Command Language
DDS	Database Development System
DEMSDB	Demonstration Standard Database
DISA	Defense Information Systems Agency
DIV	Division
DMA	Defense Mapping Agency
DoD	Department of Defense
DOS	Days of Supply
DPICM	Dual Purpose Improved Conventional Munitions

DS	Direct Support
DSA	Directed Search Area
DTG	Date Time Group
EC	Electronic Combat
ECM	Electronic Counter Measure
ECP	Engineering Change Proposal
EEI	Essential Elements of Information
ELINT	Electronic Intelligence
ELS	Entity Level Server
EODA	Entity Level JTLS Object Data Authority
ETA	Estimated Time of Arrival
FARP	Forward Arming and Refueling Point
FLP	Fire Lethality Prototype
FLOT	Forward Location of Troops
FOL	Forward Operating Location
FWL	Frederick W. Lanchester (originated a differential equation model of attrition)
GAL	Gallon
GCCS	Global Command and Control System
GRTE	Ground Route
GS	General Support
GSR	General Support Reinforcing
GUI	Graphical User Interface
HARM	High-speed Anti-radiation Missile
HE	High Explosive
HELO	Helicopter
HMMWV	High Mobility Multipurpose Wheeled Vehicle
HQ	Headquarters
HRU	High Resolution Unit
HTML	Hypertext Markup Language
HTT	High resolution unit Target Type
HUP	High resolution Unit Prototype
ICM	Improved Conventional Munitions
ICP	Interface Configuration Program
ICPLogin	Interface Login Program

ID	Identifier
IFF	Identification Friend or Foe
IIP	Intelligence Information Prototype
IMT	Information Management Tool
INFO	Information
INTEL	Intelligence
JCATS	Joint Conflict And Tactical Simulation
JDA	Japan Defense Agency
JDPI	Joint Desired Point of Impact (formerly DMPI: Desired Mean Point of Impact)
JDS	JTLS Data System
JDSP	JTLS Data System Protocol
JEDI	JODA Entity Data Identifier
JMCIS	Joint Maritime Combat Information System
JMEM	Joint Munitions Effectiveness Manuals
JODA	JTLS Object Distribution Authority
JOI	JTLS Operational Interface
JPL	Jet Propulsion Laboratory
JRSG	Joint Rapid Scenario Generation (formerly JIDPS: Joint Integrated Database Preparation System)
JSDF	Japanese Self-Defense Force
JTLS	Joint Theater Level Simulation
JTLS-GO	Joint Theater Level Simulation - Global Operations
JTOI	JTLS Transaction Operational Interface
JXSR	JTLS XML Serial Repository
KIA	Killed In Action
KM	Kilometer
KNOTS	Nautical miles per hour
LA	Lethal Area
LAN	Local Area Network
LAT	Latitude
LB	Login Build (JTLS order type)
LDAP	Lightweight Directory Access Protocol
LDT	Lanchester coefficient Development Tool
LOG	Logistics
LOGIN	Logistics Input

LOGREP	Logistics Report
LONG	Longitude
LOTS	Logistics Over The Shore
LR	Long Range
M&S	Modeling and Simulation
MAPP	Modern Aids to Planning Program
MB	Megabyte
MCP	Mobility Counter-mobility Prototype
MCR	Model Change Request
MG	Machine Gun
MHE	Material Handling Equipment
MIP	Model Interface Program
MOGAS	Motor Gasoline
MOPP	Mission-Oriented Protective Posture
MOSAIC	NCSA user interface software
MOTIF	X Window System graphical interface
MP	Maneuver Prototype
MPP	Message Processor Program
MSC	Major Subordinate Command
MSG	Message
MTF	Message Text Formats
MUREP	Munitions Report
MUSE	Multiple Unified Simulation Environment
NCSA	National Center for Supercomputing Applications (University of Illinois)
NEO	Noncombatant Evacuation Operations
NFS	Network File Server
NGO	Non-Governmental Organization
NIS	Network Information Service or Network Information System
NM	Nautical Mile
NTSC	Naval Telecommunications System Center
OAS	Offensive Air Support
OBS	Order of Battle Service (formerly UGU: Unit Generation Utility)
OCA	Offensive Counter-Air
OJCS	Organization of the Joint Chiefs of Staff

OMA	Order Management Authority
ONC	Operational Navigation Chart
OPM	Online Player Manual
OPP	Order Preprocessing Program
OTH	Over The Horizon
OTH Gold	Over The Horizon message specification
OTH-T	Over The Horizon-Targeting
pD	Probability of Detection
pE	Probability of Engage
pH	Probability of Hit
pK	Probability of Kill
PKL	Point Kill Lethality
POL	Petroleum, Oil, and Lubricants
POSIX	International operating system standard based on System V and BSD
PPS	Postprocessor System
PSYOPS	Psychological Operations
RAM	Random Access Memory
RDMS	Relational Database Management System
RECCE	Reconnaissance (air missions)
RECON	Reconnaissance (ground missions)
REGT	Regiment
RNS	Random Number Seed
ROE	Rules Of Engagement
RPT	Report
RSP	Reformat Spreadsheet Program
SAL	Surface-to-Air Lethality
SAM	Surface-to-Air Missile
SAM/AAA	Surface-to-Air Missile/Anti-Aircraft Artillery
SC	Supply Category
SCP	Simulation Control Plan
SDB	Standard Database
SDR	Scenario Data Repository
SEAD	Suppression of Enemy Air Defense
SIMSCRIPT	Simulation programming language (product of CACI, Inc.)

SIP	Scenario Initialization Program
SITREP	Situation Report
SLP	Sustainment Log Prototype
SOF	Special Operations Forces
SP	Survivability Prototype
SQL	Structured Query Language
SR	Short Range
SRP	Start/ Restart Program (a JTLS component)
SRTE	Sea Route
SSM	Surface-to-Surface Missile
STR	Software Trouble Report
SUP	Ship Unit Prototype
SVP	Scenario Verification Program
SYNAPSE	Synchronized Authentication and Preferences Service
TADIL	Tactical Digital Interface Link
TCP/IP	Transmission Control Protocol/Internet Protocol
TEL	Transporter Erector Launcher
TG	Target entity attribute prefix
TGS	Terrain Generation Service (formerly TPS:Terrain Preparation System)
TGT	Target
TMU	Terrain Modification Utility
TOE	Table of Organization and Equipment
TOT	Time Over Target
TOW	Tube-launched Optically-tracked Wire-guided missile
TPFDD	Time-Phased Force Deployment Data
TTG	Target Type Group
TTL	Target Types List
TUP	Tactical Unit Prototype
TW	Targetable Weapon
UBL	Unit Basic Load
UIM/X	GUI builder tool
UNIX	POSIX-compliant operating system
UNK	Unknown
UOM	Unit Of Measure

USA	United States Army (U.S. and U.S.A. refer to United States and United States of America)
USAF	United States Air Force
USCG	United States Coast Guard
USMC	United States Marine Corps
USMTF	United States Message Text Format
USN	United States Navy
UT	Unit entity attribute prefix
UTM	Universal Transverse Mercator
VIFRED	Visual Forms Editor
VMS	Virtual Memory System
VTOL	Vertical Take-Off and Landing aircraft
WAN	Wide Area Network
WDRAW	Withdraw
WEJ	Web Enabled JTLS
WHIP	Web Hosted Interface Program
WIA	Wounded In Action
WPC	Warrior Preparation Center
WPN	Weapon
WT	Weight
WW	Wild Weasel
XMS	XML Message Service

APPENDIX B. Version 6.3.8.0 DATABASE CHANGES

Due to changes made in support of STR JTLS-2025-17024, the JTLS-GO 6.3.4.0 database format was changed to add a new column to the text_symbol_lu table, related to unit symbols.

This change requires that users **unload** their scenarios prior to installation of JTLS-GO 6.3.4.0, and then **load** them following installation, if users are upgrading to JTLS-GO 6.3.6.0 from JTLS-GO 6.3.3.0 or earlier.

APPENDIX C. VERSION Version 6.3.8.0 REPOSITORY CHANGES

No significant changes have been made to the structure of the JTLS-GO 6.3.6.0 repository.